Tumor Necrosis Factor Inhibitors and Treatment In Autoimmune Disease

Ivan J. Fuss, MD

IBD in the United States

• Incidence: 10 cases per 100,000 per year
 ▪ Onset: 30% between 10 and 19 years
 ▪ Young children: 2%

• Prevalence: 100 cases per 100,000
 ▪ More than 1 million cases estimated in United States
 ▪ Ulcerative colitis: 50%
 ▪ Crohn’s disease: 50%

Global Prevalence of IBD

Etiologic Hypotheses

Persistent infection
- Mycobacteria
- Helicobacter sp.
- Measles-mumps
- Listeria
- Toxigenic E. coli

Defective mucosal integrity
- Altered mucus
- Increased permeability
- Cellular starvation
- Impaired restitution

Dysbiosis
- ↓ protective bacteria
- ↑ aggressive commensals

Dysregulated immune response
- Loss of tolerance
- Aggressive cellular activation
- Defective apoptosis
The chronic inflammation of IBD is due to a dysregulated immune response to antigens in the intestine.

- Innate and adaptive immune system
- Epithelial barrier function
- Composition of microbial flora
- Genetic and environmental exposures
- Defects in regulatory mechanisms

Crohn's Disease: Anatomic Distribution

- Small bowel alone (33%)
- Ileocolic (45%)
- Colon alone (20%)
Disease Distribution at Presentation: UC

n=1116

37%
46%
17%

Ulcerative Colitis: Endoscopy
Crohn’s Disease: Endoscopy

Serpiginous ulcer, a classic finding in Crohn's disease
Histology

Ulcerative Colitis
- Inflammation limited to mucosa and submucosa
- Submucosa often compressed
- Crypt abscesses common
- Goblet cells diminished
- Epithelioid granulomas absent in submucosa and deeper tissue levels

Crohn’s Disease
- Transmural inflammation with lymphoid aggregates
- Submucosa expanded by inflammation and fibrosis
- Crypt abscesses less common
- Goblet cells often normal
- Granulomas are frequent (40-60%)

CD - Distinguishing Features
- Strictures
- Endoscopic features
 - Granuloma
 - Focal lesions
 - Asymmetric involvement
 - Fistulization
 - Skip lesions
 - Small bowel involvement
- Rectal sparing
- Perineal disease
- 20-30% without gross bleeding
Crohn’s Disease
Ileocolitis
Transmural
Granulomas

Ulcerative Colitis
Colitis
Superficial
Crypt Abscesses/Ulceration

T Cell Differentiation

Fuss et al IBD 2006
Innate and Adaptive Immune Responses

Adhesion and Recruitment
Mucosal and Inflammatory Zip Codes

- VCAM-1
- MAdCAM-1
- Chemokines
- Leukocyte
- Vascular Endothelium
- Antigen
- DC
- T
- IL-12/18
- IL-10
- TGF-β
- Treg
- MAC
- TNF-α
- IFN-γ
- IL-1β
- IL-6
Immunological Factors in IBD: Crohn’s Disease
Key Inflammatory Mediators in Crohn’s Disease

Crohn’s Disease Requires a “Double Hit”

1. TLR/NLR Signals
2. Microbiota Antigens
Crohn’s Disease Results from a Dysregulated Response to Mucosal Ligands and Antigens

Immunological Factors in IBD: Ulcerative Colitis
TRUC Model

Garrett et al Cell 2007

TRUC Model-II

Garrett et al Cell Host Microbe 2010
Histopathologic Features of Oxazolone Colitis

- Pancolitis
- Superficial Inflammation
- Epithelial Cell Loss/Ulceration
- Poly and mononuclear infiltration
- Mucin Depletion

Boirivant and Fuss et al 1998

NKT Cells and IL-13 in Ulcerative Colitis

Heller et al Gastroenterology 2005
Fuss et al J Clin Invest 2004
Depletion of LPMC CD161+ T cells in UC leads to decreased IL-13 production

Fuss et al. J Clin Invest 2004

IL-13 and IFN-γ Secretion by IBD LPMCs

IL-13 secretion (pg/ml)

IFN-γ secretion (pg/ml)

Control

Crohn's Disease

Ulcerative Colitis

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

0

200

400

600

800

1000

1200

1400

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

100

200

300

400

500

600

700

800

900

0

100

200

300

400

500

600

700

800

900

LPMC

CD161 depleted LPMC
IL-13 Enhances Cytotoxicity of NKT Cells

- Invariant NK T cell line
- Ulcerative Colitis NK T Cells

Crohn’s Disease
- Ileocolitis
- Transmural Granulomas
- Th1/Th17 Inflammation: IL-12/IL-23, IFN-γ, IL-17, TNF-α

Ulcerative Colitis
- Colitis
- Superficial Crypt Abscesses/Ulceration
- Th2-like Inflammation: IL-13, IL-5, TNF-α

Fuss et al IBD 2006
Gut Lumen

Glycolipid antigen or Ag (i.e. Oxazolone)

Epithelium

APC

NKT

CD1

Glycolipid

Biologic Treatment

Strategies in CD

Biologic Treatment

Strategies in CD
Treatment of Colitis by Inhibition of Th$_1$

<table>
<thead>
<tr>
<th>Colitis</th>
<th>Treatment</th>
<th>Attenuated/ No Colitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-TNFα</td>
<td>Anti-IFNγ</td>
<td>Anti-IL-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th$_1$</td>
</tr>
</tbody>
</table>

Generations of TNF-\(\alpha\) Antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Mouse Protein</th>
<th>Human Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afelimomab</td>
<td>100% Mouse Protein</td>
<td>0% Human Protein</td>
</tr>
<tr>
<td>Infliximab</td>
<td>25% Mouse Protein</td>
<td>75% Human Protein</td>
</tr>
<tr>
<td>Adalimumab “D2E7”</td>
<td>0% Mouse Protein</td>
<td>100% Human Protein</td>
</tr>
<tr>
<td>Fully Human</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Construct of Anti-TNF-α Biologic Agents

Infliximab
- Chimeric monoclonal antibody (75% human IgG1 isotype)
- Mouse Human
- PEG, polyethylene glycol.

Adalimumab
- Human recombinant antibody (100% human IgG1 isotype)

Certolizumab Pegol
- Humanized Fab’ fragment (95% human IgG1 isotype)

Infliximab-Treated Patients with Crohn’s Disease

Clinical response defined as a ≥ 70-point decrease in CDAI score from baseline.
Clinical remission defined as a CDAI score < 150.

- Placebo (n=25)
- Infliximab 5, 10, and 20 mg/kg (n=83)

Maintenance of Remission in CD: Different Studies, Similar Efficacy

<table>
<thead>
<tr>
<th>Week 26–30</th>
<th>Infliximab 5 mg/kg</th>
<th>Adalimumab 40 mg EOW</th>
<th>Certolizumab 400 mg 4-weekly</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction (≥70 pts and ≥25% in CDAI)</td>
<td>51</td>
<td>52</td>
<td>63</td>
<td>27</td>
</tr>
<tr>
<td>Response (Δ100)</td>
<td>27</td>
<td>26</td>
<td>36</td>
<td>26</td>
</tr>
<tr>
<td>Remission (CDAI<150)</td>
<td>39</td>
<td>40</td>
<td>48</td>
<td>40</td>
</tr>
</tbody>
</table>

Biologic Treatment Strategies in UC
ACT1 and ACT2: Results at Week 8

Clinical response

<table>
<thead>
<tr>
<th>Placebo</th>
<th>5 mg/kg</th>
<th>10 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.3</td>
<td>44.1</td>
<td>49.2</td>
</tr>
</tbody>
</table>

Clinical remission

<table>
<thead>
<tr>
<th>Placebo</th>
<th>5 mg/kg</th>
<th>10 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.9</td>
<td>33.9</td>
<td>27.4</td>
</tr>
</tbody>
</table>

Rutgeerts P et al. DDW 2005, # 689; Sandborn W et al. ibid, # 688
Comparison of anti-Th1 biologics

% Patients in remission

- Placebo
- Etanercept
- Infliximab
- Adalimumab
- Fontolizumab
- Anti-IL-12

- Sandborn W et al Gastro 2001:121
- Infliximab based on Rutgeerts et al. Gastro 2004:126
- Adalimumab 160, 80mg dose
- Hommes et al. Fonto 4mg/kg at 28d
- Mannon et al. AGA 2004

Infliximab: Mechanism of Action

- Membrane-bound TNFα
- Activation of complement (in vitro)
- Infliximab
- Soluble TNFα
- TNFα
- Target cell
- Macrophage

- TNF receptor
Crohn’s disease patients have a decreased ability to undergo apoptosis. Boirivant et al. Gastroenterology 1999

Infliximab induces Apoptosis of Crohn’s disease patients monocyte population

Extrinsic pathway:
- DNA damage
- Cellular stress
- Deprivation of growth factors

Intrinsic pathway:
- Bid
- Fas
- Fas Ligand
- FADD
- Pro-caspase-8
- Bcl-2
- Bcl-xl
- Bax, Bak

Caspase-3

APOPTOSIS

Siegel Figure 2

Lugering et al. Gastroenterology 2001
Decreased cell death may be due to overexpression of anti-apoptotic protein Bcl-2

Infliximab induces changes in the Bax/Bcl-2 pathways
Increased active Caspase-3 expression is observed after Infliximab administration

Infliximab but not Etanercept can induce Apoptosis of Lamina Propria T cells

Van den Brande et al. Gastroenterology 2003
Figure 2. Effects of TNF blockade on antigen-induced production of IFNγ in whole blood cultures stimulated with M. tuberculosis culture filtrate.

Wallis et al 2007
Infliximab: Mechanism of Action

Figure 4. Effect of TNF blockade on apoptosis in 48-hour cultures of M. tuberculosis culture filtrate-stimulated monocytes. Symbols indicate:

- **Infliximab**
- **Adalimumab**
- **Etanercept**

Wallis et al 2007
Side-effects of anti-TNF agents

- Hypersensitivity reactions
 - infusion or injection site reactions
 - serum sickness/delayed hypersensitivity
- Immunogenicity
- Headache
- Rash

- Infections
 - mild and serious
- Demyelinating disorders
- Autoantibodies
- Pancytopenia
- Heart failure
- Hepatotoxicity
- Malignancy

Are serious infections more common if taking more than 1 medication?

- TREAT registry
 - Corticosteroids (HR 2.0, 95% CI 1.4-2.9)
 - Narcotics (HR 2.7, 95% CI 1.9-4.0)

- Opportunistic infections

<table>
<thead>
<tr>
<th></th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 medication</td>
<td>2.9 (1.5-5.3)</td>
</tr>
<tr>
<td>2 or 3 medications</td>
<td>14.5 (4.9-43)</td>
</tr>
</tbody>
</table>
Infliximab Surveillance: Opportunistic Infections

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Reports per 1000 Pt-Yrs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumocystis carinii pneumonia</td>
<td>0.07</td>
</tr>
<tr>
<td>Histoplasmosis</td>
<td>0.05</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>0.06</td>
</tr>
<tr>
<td>Atypical mycobacteria</td>
<td>0.05</td>
</tr>
<tr>
<td>Aspergillosis</td>
<td>0.04</td>
</tr>
<tr>
<td>CMV infections</td>
<td>0.04</td>
</tr>
<tr>
<td>Legionella</td>
<td>0.03</td>
</tr>
<tr>
<td>Systemic candidiasis</td>
<td>0.03</td>
</tr>
<tr>
<td>Salmonella</td>
<td>0.03</td>
</tr>
<tr>
<td>Coccidioidomycosis</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Risk of death from sepsis = 4/1000 pt-yrs

Since first exposure Data on file, Centocor, Inc.
Who are the patients who are dying from sepsis related to anti-TNF?

- Older
 - Average age = 63 (systematic review); 67 (Mayo)
- Multiple co-morbidities
- Concomitant steroids and/or narcotics
- Long-standing disease

Young “healthy” patients are not in the clear, but probably less at risk

Risk of NH Lymphoma with anti-TNF treatment for Crohn’s Disease

Meta-analysis Results

- 8905 patients representing 20,602 pt-years of exposure
- 13 Non-Hodgkin lymphomas \(\Rightarrow 6.1 \text{ per 10,000 pt-years} \)
- Mean age 52, 62% male
- 10/13 exposed to IM* (so this is really a study of combo Rx)

<table>
<thead>
<tr>
<th></th>
<th>NHL rate per 10,000</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEER all ages</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IM alone</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anti-TNF vs SEER</td>
<td>6.1</td>
<td>3.23</td>
<td>1.5-6.9</td>
</tr>
<tr>
<td>Anti-TNF vs IM alone</td>
<td>6.1</td>
<td>1.7</td>
<td>0.5-7.1</td>
</tr>
</tbody>
</table>

Sircic et al., Gastro 2008;134(4) A14
*not reported in 2
Hepatosplenic T-cell lymphoma

- 9 cases in IBD with 6MP/AZA alone
- 16 cases in IBD patients taking infliximab or adalimumab with 6MP/AZA
 - Age range 12-58 years old
 - Average age = 23 years old
 - Almost all are male (15/16)
 - Infusions ranged from 1-24
 - 7 patients had ≤ 3 infusions
 - Three received adalimumab (after infliximab)
 - Appears to be universally fatal

HSTCL – How big of a problem is this?

- Over 1 Million anti-TNF treated patients worldwide
- About 4.5 Million patient-years of exposure
- No anti-TNF monotherapy (but not many out there)
PID & Genetic Susceptibility to Infections

<table>
<thead>
<tr>
<th></th>
<th>Bacterial</th>
<th>Viral</th>
<th>Parasitic</th>
<th>Fungal</th>
<th>Micobact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cells</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B cells</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NK/NKT cells</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMN cells</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MN cells</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Complement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infectious Diseases Susceptibility Primary Immunodeficiency

- **MSMD** *(Mendelian Susceptibility to Mycobacterial Diseases)*
 - IFNGR1
 - IFNGR2
 - IL12B
 - IL12RB1
 - STAT1
 - NEMO
 - TYK2

IFNγ/IL-12/23 pathway
Infectious Diseases Susceptibility
Primary Immunodeficiency

Macrophages

T and NK lymphocytes

IFNγ/IL-12/23 pathway

IFNγ/IL-12/23 pathway
BCG in Primary Immunodeficiencies

IL-12Rβ1 deficiency

Journal of Infectious Diseases 200, 799-812
Biologic era in IBD management: Mucosal Healing

Cellular Pathogenesis of Crohn’s Disease and Approaches to its Treatment

- IL-12/IL-23 Specific Antibodies
- NF-κB inhibitors
- TNF-Specific Inhibitors
- Epithelium
- Commensal bacteria
- Cellular Pathogenesis of Crohn’s Disease and Approaches to its Treatment
- IL-12
- MHC
- TCR
- Retinoic Acid,
- TGF-β
- Treg cell
- Th17 effector T cell
- Th1 effector T cell
- DC
- TGF-β/IL-10
- Macrophage
- Neutrophil
- IL-6
- IL-1β
- TNF
- IFN-γ
- TNF
- IL-17
- Anti-T Cell Antibodies
- Enhancers of Treg Function
- Innate Immune Response Modifiers
- Integrin or Chemokine Receptor Inhibitors
- Mesenteric Lymph node
- Th1 or Th17
- Treg
- Peyer’s patch
- Lamina Propria
- Response Modifiers