State of the State in TB Control

Jason Stout, MD, MHS
Wake County TB Medical Consultant
North Carolina TB Medical Director
Division of Infectious Diseases, Duke University Medical Center
TB is history they say,
Less tomorrow than today.
2011 was a banner year,
From TB we had little to fear.
But money’s tight, that’s for sure,
And it still takes 6 months for cure.
AG Holley’s being sold,
To build a golf course for the old.
Will our office furniture go to pawn,
To keep our programs soldiering on?

TB News in 2012

• Case counts continue to drop
• Change in NC TB regulations
• More data on IGRAs coming
• New regimen for latent TB
• Hope for new therapies
TB in NC

- Incidence estimated 2.5/100 K in 2011
 - 3.6/100K in 2008
- National incidence 3.4/100 K
- By far the lowest case number and incidence rate ever recorded
Rule Change

- Updating of NC rules related to TB
- Designed to streamline public health practice
- Facilitate newer technologies

Rule Change-Respiratory Isolation

- Traditionally 3 negative AFB smears required to get off isolation
- Sets of sputums collected every 1-2 weeks
- CDC guidelines actually only require 2 consecutive specimen, collection at monthly intervals
Rule Change-Respiratory Isolation

- Temporary rule change effective 8/1/2011 reduced number of specimens from 3 to 2
- Permanent rule change effective 8/1/2012
- This applies only to OUTPATIENT isolation—hospital infection control policies/CDC guidelines still apply for inpatients

Rule Change-TB Screening

- New blood tests for TB infection have been available in the US for several years
- In NC, we have access to both:
 - Quantiferon Gold in-tube®
 - T-SPOT.TB®
- Both are FDA-approved
Rule Change-TB Screening

- Rule change permits use of blood tests wherever TST would have been used
- Specifically:
 - Contacts
 - TB suspects
 - HIV +
 - DOC employees/inmates
 - SNF employees/residents

Rule Change-TB Screening

- A single blood test replaces two-step testing
- Two-step testing otherwise required on employment for
 - DOC employees
 - SNF employees/residents
 - Adult day care for HIV/AIDS
- No need to 2-step if done before
- 1-step only if TST done in past year
IGRAs in 2012

• Two tests clinically available
 – Quantiferon Gold in-tube®
 – T-SPOT.TB®
• Permit screening for LTBI with single blood draw
• Direct cost significantly more expensive than TST

IGRAs in 2012

• Key questions still unanswered:
 – How well do IGRAs work in predicting progression to TB?
 – What is the significance of discordant test results?
 – How do we deal with test-retest variability?
QFT in German Contacts

- Update of 2009 study examining relative ability of QFT and TST to predict future TB in contacts to active TB
- Examined contacts of smear-positive cases in Hamburg, Germany 2005-2008
- Followed up until 2010

Diel R et al., American Journal of Respiratory and Critical Care Medicine 2011; 183: 88

1417 Close Contacts

1335 with valid TST/QFT

954 available for f/u

903 untreated

79 refused TST (QFT only)

3 indet QFT

381 relocated

51 completed LTBI rx
Caveats

- Relatively small number of active TB cases (only 11 culture-confirmed)
- Large discrepancy between % positive with TST and QFT not seen in all studies
- Don’t know if this applies to reactors, other high-risk populations
TBESC TO 1

- 10-year study that will enroll over 40,000 high-risk persons
- Each person will get TST, QFT, T-SPOT
- Persons positive by any test will get f/u for 2 yrs
- Who knows if we’ll be using the same tests by then…

New Therapies

- Need alternative treatments for patients with drug intolerance
- Need alternative treatments for patients with drug resistance
- Ideally want shorter, better-tolerated regimens for all patients
New Regimen for Latent TB

- Shorter!
- Better tolerated!
- Higher completion!
- Stay tuned for David Holland’s talk…

Active TB Treatment Studies

- NC has a long history of participation in TB research
- Several counties have contributed patients to active treatment protocols
- This commitment to advancing TB care is paying off!
Rifapentine-TBTC Study 29
Sputum smear (+) PTB suspect

Randomization
stratified by region, cavitation

RIF 10 mg/kg
INH+PZA+EMB
5/7 for 8 weeks
without food

RPT 10 mg/kg
INH+PZA+EMB
5/7 for 8 weeks
without food

study visits q2wks:
*safety
*sputum culture

End of intensive phase (= wk 8): assess for primary endpoints

ATS/CDC/IDSA-recommended continuation phase regimen

Study Setting
U.S. Centers for Disease Control and Prevention

TB Trials Consortium 2010-2020
TBTC Study 29

• Primary Objective
 – Compare, by treatment regimen, the proportion of individuals having negative sputum cultures at the end of intensive phase TB treatment (surrogate marker of durable cure)

• Secondary Objectives
 – Compare safety and tolerability
 – Compare time to culture conversion
 – Determine PK parameters

Endpoints

• Co-primary efficacy endpoints
 – Culture status in liquid MGIT media at completion of intensive phase treatment
 – Culture status on solid LJ media at completion of intensive phase treatment

• Secondary efficacy endpoints
 – Time to first negative culture, collected at 2, 4, 6, 8 weeks
 – Time to stable culture conversion

• Tolerability and Safety
 – Discontinuation of intensive phase therapy
 – Adverse events, by severity and type
Enrollment and Disposition of Study 29 Participants

- Screened N=1549
 - Not enrolled N=1018
 - Enrolled, Randomized N=531
 - Rifampin N=255
 - Not Protocol Correct N=74
 - Protocol Correct N=181
 - Rifapentine N=276
 - Not Protocol Correct N=70
 - Protocol Correct N=206

Other reasons for non-enrollment:
- Drug resistant (30)
- Missing DST result (6)
- No baseline or MTB pos (25)
- Protocol violation (16)
- Missing/resident in 8+ wk (9)
- Lost to follow-up (1)
- Other (6)

- Drug resistant (21)
- Missing DST result (7)
- No baseline or MTB pos (15)
- Protocol violation (11)
- Missing/resident in 8+ wk (5)
- Lost to follow-up (2)
- Other (6)

Baseline characteristics (liquid culture protocol correct group)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rifampin N=179</th>
<th>Rifapentine N=202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (IQR)</td>
<td>34 (26, 47)</td>
<td>32 (26, 46)</td>
</tr>
<tr>
<td>Median BMI (IQR)</td>
<td>20 (18, 22)</td>
<td>20 (18, 23)</td>
</tr>
<tr>
<td>% female</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>% @ African sites</td>
<td>52</td>
<td>55</td>
</tr>
<tr>
<td>% HIV-positive</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>% with cavitation on CXR</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>% with smear grade 3 or 4</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td>Median # days prior TB tx (IQR)</td>
<td>2 (0, 4)</td>
<td>2 (0, 4)</td>
</tr>
</tbody>
</table>
Efficacy: Primary Endpoints

% of subjects having negative sputum cultures at end of intensive phase in the Protocol Correct analysis group

<table>
<thead>
<tr>
<th>Culture Medium</th>
<th>Rifampin</th>
<th>Rifapentine</th>
<th>p</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>liquid</td>
<td>128/179 71.5%</td>
<td>152/202 75.3%</td>
<td>0.48</td>
<td>3.7 (-5.7, 13.2)</td>
</tr>
<tr>
<td>solid</td>
<td>152/171 88.9%</td>
<td>182/198 91.9%</td>
<td>0.42</td>
<td>3.0 (-3.6, 9.6)</td>
</tr>
</tbody>
</table>

Multivariate Logistic Regression Model for Sputum Culture Negativity at End of Intensive Phase for Protocol Correct Analysis Group, Liquid Media

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifapentine vs Rifampin</td>
<td>1.27</td>
<td>0.79, 2.03</td>
<td>0.33</td>
</tr>
<tr>
<td>Assignment stratum</td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Non-Africa, non-cavitary</td>
<td>1.00</td>
<td>(ref)</td>
<td></td>
</tr>
<tr>
<td>Non-Africa, cavitary</td>
<td>1.45</td>
<td>0.37, 5.66</td>
<td>0.59</td>
</tr>
<tr>
<td>Africa, non-cavitary</td>
<td>0.40</td>
<td>0.15, 1.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Africa, cavitary</td>
<td>0.77</td>
<td>0.19, 3.12</td>
<td>0.72</td>
</tr>
<tr>
<td>Female</td>
<td>2.78</td>
<td>1.59, 4.84</td>
<td><0.01</td>
</tr>
<tr>
<td>High bacillary load – smear Gr 3, 4</td>
<td>0.34</td>
<td>0.19, 0.58</td>
<td><0.01</td>
</tr>
<tr>
<td>Fever</td>
<td>0.37</td>
<td>0.17, 0.84</td>
<td>0.01</td>
</tr>
<tr>
<td>Productive cough</td>
<td>0.12</td>
<td>0.01, 0.91</td>
<td><0.01</td>
</tr>
<tr>
<td>Cavitation size (baseline CXR)</td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Extent of disease (baseline CXR)</td>
<td></td>
<td></td>
<td>0.52</td>
</tr>
</tbody>
</table>
Safety and Tolerability

<table>
<thead>
<tr>
<th></th>
<th>Rifampin N=254</th>
<th>Rifapentine N=275</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx discontinued</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Due to toxicity</td>
<td>15.7%</td>
<td>14.5%</td>
<td>0.79</td>
</tr>
<tr>
<td>Due to hepatitis</td>
<td>1.2%</td>
<td>1.5%</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>1.5%</td>
<td>0.69</td>
</tr>
<tr>
<td>Adverse Events related</td>
<td>18.1%</td>
<td>22.6%</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>5.9%</td>
<td>8.0%</td>
<td>0.40</td>
</tr>
<tr>
<td>Serious Adverse Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Related</td>
<td>3.9%</td>
<td>6.9%</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>0.4%</td>
<td>1.1%</td>
<td>0.62</td>
</tr>
<tr>
<td>Hepatitis*</td>
<td>2.8%</td>
<td>3.6%</td>
<td>0.63</td>
</tr>
<tr>
<td>Deaths</td>
<td>0%</td>
<td>1.1%</td>
<td>0.28</td>
</tr>
</tbody>
</table>

*Transaminases and/or bilirubin >5x ULN, or >3x ULN with symptoms

Study 29 Summary

- The activity of the RPT regimen was not superior to that of the RIF regimen, based on the endpoint of culture status at completion of intensive phase treatment
 - There was a trend towards superiority of the RPT regimen in “non-cavitary” pulmonary disease

- A regimen containing RPT 10 mg/kg administered 5 days/week without concomitant food, for approximately 8 weeks, was safe and well-tolerated

- Additional trials are needed to define the optimal dose of RPT and its role in TB treatment.
 - S29X (RPT dose-escalation, phase II) ongoing
Where to Go From Here?

• Exciting developments in the drug landscape in the past several years
• Not-so-exciting developments in the world economy ➔ decreased funding for clinical trials

Drug Resistance

• Drug susceptible TB
 – 6 months of treatment
 – Cost of therapy ~$20
 – Cure rate ~95%
• MDR TB (Resistant to INH + RIF)
 – 18-24 months of treatment
 – Best cost (GLC) of therapy ~$5000
 – Cure rate 60-80%
Drug Resistance

• XDR TB (MDR + resistant to FQ, 2nd line injectable)
 – ? Duration of treatment
 – ? Cure rate (maybe 30%, best case)
 – ? Treatment cost (beaucoup moneys)

New Drugs for MDR

• MDR not common in US, but each case has major impact
• MDR increasingly common in the world
• XDR a major concern worldwide—each case is a “public health disaster”
• Need better treatments
• Fortunately, some are “in the pipeline”
Investigational Drugs

<table>
<thead>
<tr>
<th>ATP synthase inhibitors</th>
<th>Oxazolidinones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedaquiline (TMC207)</td>
<td>Sutezolid (PNU-100480)</td>
</tr>
</tbody>
</table>

Nitroimidazoles
- Delamanid (OPC-67683)
- PA-824 (Pa)

Ethylenediamines
- SQ109 (Q)

Bedaquiline Phase II for MDR

- 8-week randomized, placebo-controlled study
- Bedaquiline added to “optimized background regimen”
- Primary endpoint: time to culture conversion in liquid media

NEJM 2009; 360: 2397
Bedaquiline Phase II MDR

Discontinuation=failure to convert analysis at 24 weeks:
• Time to 50% culture conversion 78 vs. 129 days
• 81% vs. 65% culture conversion at 24 weeks

Table 1: Demographic and Baseline Clinical Characteristics and Drug Susceptibility of the Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TBSDF (n=22)</th>
<th>Placebo (n=25)</th>
<th>Total (n=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: M+F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Range</td>
<td>10-57</td>
<td>10-57</td>
<td>10-57</td>
</tr>
<tr>
<td>Body mass index*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>18.2</td>
<td>18.5</td>
<td>18.3</td>
</tr>
<tr>
<td>Range</td>
<td>14.2-26.9</td>
<td>13.8-20.9</td>
<td>13.8-26.9</td>
</tr>
<tr>
<td>Race: black</td>
<td>18 (82%)</td>
<td>17 (68%)</td>
<td>35 (74%)</td>
</tr>
<tr>
<td>White</td>
<td>3 (14%)</td>
<td>3 (12%)</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (5%)</td>
<td>1 (4%)</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>IV patients</td>
<td>3 (14%)</td>
<td>3 (12%)</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>IV self-care</td>
<td>3 (14%)</td>
<td>3 (12%)</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>Median</td>
<td>675</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>140-1187</td>
<td>290-1127</td>
<td></td>
</tr>
<tr>
<td>Sputum culture: M+F (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>6 (28%)</td>
<td>7 (28%)</td>
<td>13 (28%)</td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>14 (65%)</td>
<td>13 (52%)</td>
<td>27 (58%)</td>
</tr>
<tr>
<td>NaF, %</td>
<td>3 (14%)</td>
<td>4 (16%)</td>
<td>7 (15%)</td>
</tr>
<tr>
<td>Susceptibility results: M+F (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum culture: M+F (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>10 (45%)</td>
<td>14 (56%)</td>
<td>24 (51%)</td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>25 (115%)</td>
<td>25 (100%)</td>
<td>50 (105%)</td>
</tr>
<tr>
<td>NaF, %</td>
<td>3 (14%)</td>
<td>2 (8%)</td>
<td>5 (11%)</td>
</tr>
<tr>
<td>Susceptibility results: M+F (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>15 (68%)</td>
<td>34 (100%)</td>
<td>49 (100%)</td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>15 (68%)</td>
<td>34 (100%)</td>
<td>49 (100%)</td>
</tr>
<tr>
<td>NaF, %</td>
<td>14 (63%)</td>
<td>15 (60%)</td>
<td>29 (62%)</td>
</tr>
<tr>
<td>Total score in culture %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>14 (63%)</td>
<td>14 (63%)</td>
<td>28 (60%)</td>
</tr>
<tr>
<td>Caroia et al.</td>
<td>31 (140%)</td>
<td>31 (125%)</td>
<td>62 (130%)</td>
</tr>
</tbody>
</table>

* Body mass index is the weight in kilograms divided by the square of the height in meters.
* Test was determined by the virologist.
* Susceptibility results are for 22 patients. 17 are in the TBSDF group and 5 are the placebo group.
* Susceptibility results are for 22 patients. 17 are in the TBSDF group and 5 are the placebo group.
* Caroia et al. (2009) NEJM; Buxton et al (2012) AAC
Bedaquiline Current Status

- Company filed for accelerated approval with FDA 7/3/12
- Approval would be for treatment of MDR TB
- Potential for this drug to be used in treatment-shortening regimens…

Delaminid Phase II for MDR

- 8-week randomized, double-blind, placebo-controlled study
- Multinational
- Delaminid added to “optimized background regimen” at 2 different doses (100 bid or 200 bid)
- Primary endpoint: proportion with sputum culture conversion in liquid media at 8 wks

NEJM 2012; 360: 2397
Table 1. Demographic and Baseline Clinical Characteristics of the Modified Intention-to-Treat Population for the Primary Efficacy Analysis. 7

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Delampanel, 100 mg Twice Daily (N = 141)</th>
<th>Delampanel, 200 mg Twice Daily (N = 138)</th>
<th>Placebo (N = 135)</th>
<th>Total (N = 403)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age — yr</td>
<td>Median 36</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Range 26—63</td>
<td>18–63</td>
<td>18–63</td>
<td>18–63</td>
</tr>
<tr>
<td>Male sex — no. (%)</td>
<td>91 (64.5)</td>
<td>95 (69.9)</td>
<td>89 (71.2)</td>
<td>275 (68.8)</td>
</tr>
<tr>
<td>Body-mass index</td>
<td>Median 19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>Range 12–31</td>
<td>12–40</td>
<td>12–31</td>
<td>12–40</td>
</tr>
<tr>
<td>Region — no. (%)</td>
<td>Americas 39 (27.7)</td>
<td>38 (27.8)</td>
<td>39 (31.2)</td>
<td>116 (28.9)</td>
</tr>
<tr>
<td></td>
<td>Southeast Asia 43 (30.5)</td>
<td>47 (34.6)</td>
<td>45 (36.0)</td>
<td>135 (33.6)</td>
</tr>
<tr>
<td></td>
<td>Northeast Asia 29 (20.6)</td>
<td>28 (20.6)</td>
<td>25 (18.9)</td>
<td>82 (20.4)</td>
</tr>
<tr>
<td></td>
<td>Eastern Europe or Mediterranean 30 (21.3)</td>
<td>23 (16.9)</td>
<td>16 (12.8)</td>
<td>69 (17.2)</td>
</tr>
<tr>
<td>Living cavities — no. (%)</td>
<td>Absent 44 (31.2)</td>
<td>43 (31.6)</td>
<td>38 (30.4)</td>
<td>125 (31.1)</td>
</tr>
<tr>
<td></td>
<td>Unilateral 60 (42.6)</td>
<td>56 (41.2)</td>
<td>60 (48.0)</td>
<td>176 (43.8)</td>
</tr>
<tr>
<td></td>
<td>Bilateral 37 (26.2)</td>
<td>37 (27.2)</td>
<td>27 (20.6)</td>
<td>101 (25.1)</td>
</tr>
<tr>
<td>Previous treatment — no. (%)</td>
<td><30 days before randomization 14 (10.3)</td>
<td>14 (10.3)</td>
<td>14 (10.3)</td>
<td>43 (10.6)</td>
</tr>
<tr>
<td></td>
<td>≤30 days before randomization 90 (62.0)</td>
<td>88 (63.7)</td>
<td>79 (62.1)</td>
<td>257 (64.0)</td>
</tr>
<tr>
<td></td>
<td>First-line only 11 (7.8)</td>
<td>12 (9.1)</td>
<td>13 (9.7)</td>
<td>36 (9.0)</td>
</tr>
<tr>
<td></td>
<td>Second-line or without first-line 48 (34.1)</td>
<td>49 (35.6)</td>
<td>45 (33.6)</td>
<td>143 (35.5)</td>
</tr>
<tr>
<td></td>
<td>Third-line or without first-line or second-line 18 (12.8)</td>
<td>22 (16.4)</td>
<td>22 (16.4)</td>
<td>62 (15.4)</td>
</tr>
</tbody>
</table>
Delaminid Phase II

- Only adverse effect more common in delaminid group was QT prolongation
 - 3.8% in placebo group
 - 9.9% in 100 bid group
 - 13.1% in 200 bid group
- All asymptomatic, no clinical events
- Pk substudy demonstrated nonlinear AUC increase with dose increase
Summary

- Continued decline in TB cases in 2011
- Concern that the program will be eliminated before the disease is eliminated
- Streamlining the rules to make public health practice more efficient
- New drugs may change the game in the next 5-10 years